Повышенная энергоэффективность. Повышение эффективности энергосбережения в масштабах мкд. Почему необходимо повышать энергоэффективность МКД

Отопление 20.05.2021
Отопление

В.И. Ливчак, вице-президент НП «АВОК»

В ближайшее время в соответствии с Федеральным законом от 23 ноября 2009 года № 261-ФЗ «Об энергосбережении и повышении энергетической эффективности...» должны быть установлены приборы учета потребляемой тепловой энергии на каждом здании. Кто и как в системе коммунальной теплоэнергетики и жилищного хозяйства будет учитывать это теплопотребление, начислять платежи? Четкий и аргументированный ответ дан в - контролировать потребление теплоты и расчеты за него должен независимый оператор коммерческого учета. На наш взгляд, помимо этого он должен анализировать эффективность потребления энергоресурса. Как это осуществить?

Полностью поддерживаю мнение автора , что только при независимом операторе будут исключены возможные злоупотребления как со стороны теплоснабжающей организации, пытающейся перекладывать свои издержки на потребителей, так и со стороны теплопотребителя, в лице управляющих компаний и ТСЖ, которые склонны оплачивать поставленные коммунальные ресурсы по их показаниям только в том случае, если их платежи становятся меньше. А несвоевременное или неправильное решение этих вопросов чревато, помимо прочего, социальными последствиями и политической нестабильностью.

Несомненно, должна быть некая третья сторона, подконтрольная как государственным органам, так и сторонам расчетов, и гарантирующая достоверность учета энергоресурсов и справедливость начисления платежей по их показаниям. Тем более, что, как правильно замечает автор статьи , «существует техническая возможность манипуляции данными приборов учета, как на уровне самих приборов учета, так и на уровне АСКУЭ, т. е. программной обработки их данных, а многочисленные нормативные акты разных законодательных систем позволяют допускать произвол как при начислении платежей, так и при их оплате».

История отношений между поставщиками ресурсов и потребителями в России не способствовала возникновению доверия у сторон. Это пошло еще из советских времен, когда и в помине не было приборов учета. Помню в тепловых пунктах зданий и в ЦТП на стене висели таблицы с температурными графиками отпуска теплоты от источника и требуемыми у потребителя: слева колонка с температурой наружного воздуха, следующая - температура теплоносителя в подающем трубопроводе тепловых сетей, далее - температура после элеватора системы отопления и температура воды в обратном трубопроводе системы отопления, она же, если не было водонагревателей горячего водоснабжения, и температура теплоносителя, возвращаемого в тепловую сеть.

И нередко эта таблица была яблоком раздора - работники дома управления жаловались, что в теплосети не соблюдается температурный график: при низких температурах наружного воздуха температура теплоносителя, поступающего в тепловой пункт из тепловых сетей, была ниже графика, а в теплый период, наоборот, выше (перетапливали, чтобы в целом за год уложиться в лимит). Представители теплоснабжающей организации справедливо ругали потребителя за превышение температуры воды в обратном трубопроводе системы отопления по сравнению с требуемой по графику в соответствии с текущей наружной температурой. Закончилось тем, что представители Теплосети отрезали колонку с температурой наружного воздуха и стали требовать от потребителя, чтобы температура возвращаемого теплоносителя соответствовала по строчке таблицы температуре подаваемого ими теплоносителя, независимо от текущей температуры наружного воздуха.

Конечно, это полная бесконтрольность за действиями поставщика ресурса и вопиющая несправедливость по отношению к потребителю и населению, поскольку все нарушения в теплоснабжении ложатся на их плечи, и они не могут привлечь к ответственности за эти нарушения поставщика тепловой энергии. Такое продолжалось несколько лет и после развала плановой экономики, и даже разрабатывали приборы автоматики, реализующие зависимость обратной температуры из системы отопления от температуры в подающем трубопроводе без связи с наружной температурой. Конечно, такое не способствовало доверию потребителя к поставщику тепла.

Для возможности анализа энергоэффективности используемого ресурса типовые ведомости посуточного, в течение каждого месяца, учета отпуска тепловой энергии, измеренной в индивидуальном тепловом пункте (ИТП) и центральном (ЦТП) (табл. 1), необходимо дополнить информацией о температуре наружного воздуха, исключенной, как было сказано, еще в советское время. Это позволит, сопоставляя фактический (измеренный теплосчетчиком) расход теплоты на отопление с требуемым (для текущей температуры наружного воздуха), судить о правильности отопления каждого дома, а по завышению температуры в обратном трубопроводе против графика - о перегреве здания.

Требуемый в зависимости от наружной температуры график подачи теплоты на отопление, рассчитанный на обеспечение комфортных условий пребывания в отапливаемых помещениях, определяется по энергетическому паспорту проекта, обязательному в соответствии с требованиями для всех строящихся и капитально ремонтируемых жилых и общественных зданий. Для зданий, построенных до 2003 г., энергетический паспорт рассчитывается по результатам энергетического обследования. Но сопоставляя фактическое и требуемое теплопотребление, мы выявляем возможные несоответствия, воздействовать на устранение которых возможно только применением автоматического регулирования подачи теплоты на отопление в ИТП здания или в автоматизированном узле управления системой отопления (АУУ) при подключении группы зданий через ЦТП.

Поэтому, целесообразно установку домовых узлов учета совмещать с реализацией системы автоматического регулирования подачи теплоты на отопление на вводе системы в дом через оптимальный температурный график, реализуя режим подачи в зависимости от изменения температуры наружного воздуха с учетом выявленного запаса системы отопления и увеличения доли бытовых тепловыделений в тепловом балансе квартир с повышением наружной температуры. Только за счет учета постоянства бытовых тепловыделений в течение отопительного периода можно сократить теплопотребление системы отопления за этот период на 10-15%, обеспечивая при этом температуру воздуха в помещениях на комфортном уровне 20-22 О С и нагрев наружного воздуха для вентиляции в объеме нормативного воздухообмена .

Теплоснабжение зданий с АУУ от ЦТП

В связи с индивидуальными для каждого дома значениями этого запаса и доли, зависящей от степени заселенности дома и качества его утепления, казалось бы наиболее простое решение - автоматизация регулирования подачи теплоты на отопление в ЦТП, где за счет установки одной системы автоматизации можно осуществить погодное регулирование группы зданий, не приводит к должному энергетическому эффекту. Поэтому при наличии ЦТП в системах отопления домов, подключенных к нему, устанавливаются автоматизированные узлы управления. На рисунках 1 и 2 приводятся схемы АУУ и ИТП, оборудованные приборами учета и автоматического регулирования подачи тепловой энергии.

Совмещение организации узла учета в многоквартирных домах с системой авторегулирования подачи теплоты на отопление не вызовет значительных инвестиций. Вложенные средства окупятся в первый год эксплуатации, если ставить цель не «осваивать» их, а разумно использовать. Разумность заключается в том, что в ИТП или АУУ размещение водопроводных и пожарных насосов не предусматривается, исходя из разделения сферы деятельности и повышенного шума от этих насосов (бесфундаментные циркуляционные насосы отопления и горячего водоснабжения не требуют выполнения противошумных мероприятий). При подключении к водопроводу для подачи воды, направляемой на горячее водоснабжение, необходимо обеспечить такое же давление в сети ГВС, как и в системе холодного водоснабжения дома, поэтому на рис. 2 показана установка циркуляционного насоса системы горячего водоснабжения по циркуляционно-повысительной схеме - на подающем трубопроводе, после узла смешения для компенсации потерь давления в водонагревателях.

АУУ или ИТП, как правило, должны быть встроенными в обслуживаемые ими здания и размещаться в техническом подполье или подвале, они не требуют устройства отдельных входов и выходов. Не требуется также отдельной вентиляции, сооружения специального ограждения в виде стен или глухих перегородок. Помещение теплового пункта рекомендуется огораживать сеткой или решеткой с дверью для исключения доступа посторонних лиц. По периметру ограждения целесообразно выполнять гидроизоляцию высотой 20 см от пола. При недостаточной высоте технических подполий, помещение ИТП углубляют с устройством дренажного приямка. Для откачки воды из дренажного приямка достаточно автоматического откачивающего насоса типа «Гном» (стоимостью около 2 000 руб.) без резерва, и не нужно двух высокотемпературных дренажных насосов импортного производства (стоимостью более 50 тыс. руб. каждый), как было предложено в типовом проекте капитального ремонта московских жилых домов.

В целях сокращения затрат в соответствии с п. 4.15 бесфундаментные циркуляционные насосы систем отопления и ГВС допускается устанавливать без резерва (второй насос хранится на складе). Это не только экономит средства на обвязку насосов, но и затраты на электрооборудование и кабели для осуществления автоматического переключения их работы. Насосы потребляют энергии меньше, чем бытовая печь СВЧ, и подключение их должно быть таким же простым.

В случае неисправности насоса при установке его без резерва или отключения электроэнергии, во избежание поступления перегретого теплоносителя из тепловой сети в систему отопления без подмешивания, регулирующий клапан (рис. 1) механически закрывается под воздействием пружины. Частотный преобразователь электродвигателя насоса поддерживает заданную циркуляцию теплоносителя в системе отопления. Регулятор перепада давлений между подающим и обратным трубопроводами на вводе в дом устанавливать не требуется, т.к. располагаемый напор на вводе всегда не превышает 200 кПа, поскольку ограничивается автоматикой ЦТП. По этой же причине нет необходимости в переносе корректирующего подмешивающего насоса с перемычки на подающий или обратный трубопроводы.

Для предотвращения гидравлической разрегулировки внутриквартальных сетей отопления при занижении температурного графика отпуска тепла от ЦТП, когда в ближайших к ЦТП АУУ автоматика регулирования отопления будет стремиться компенсировать занижение температуры теплоносителя увеличением его расхода сверх расчетного значения и тогда его не хватит для более удаленных АУУ, вводится автоматическое ограничение расхода теплоносителя на АУУ (обозначено на рисунке G огр). По сигналу от датчика расхода воды, входящего в состав теплосчетчика, и соединенного также с контроллером регулятора отопления, при достижении расчетного расхода прекращается открытие регулирующего клапана, на закрытие клапана команда проходит в штатном режиме.

В ИТП сигнал «ограничение расхода теплоносителя» выполняет роль предотвращения влияния неравномерности потребления теплоты горячим водоснабжением на увеличение расчетного расхода теплоносителя из тепловой сети при включении водонагревателя 2-ой ступени ГВС параллельно системе отопления (смешанная схема включения ГВС) . При превышении расхода теплоносителя выше расчетной величины, определяемой расчетной нагрузкой отопления и среднечасовой нагрузкой горячего водоснабжения, сигнал блокирует команды регулятора отопления на открытие клапана, и расход сохраняется в пределах заданного, но при этом график регулирования не будет выдерживаться, и система отопления недополучит некоторого количества теплоты.

При прекращении интенсивного водоразбора расход теплоносителя сокращается и сигнал ограничения снимается, контроллер продолжает поддерживать заданный температурный график. Небольшой «недотоп» за время несоблюдения графика регулирования отопления компенсируется некоторым повышением на 2-3 градуса температурного графика задаваемого контроллеру (2 О С при расчетных параметрах теплоносителя 95-70 О С и 3 О С при параметрах 105-70 О С). Тогда, в периоды водоразбора ниже среднего полученный при остановке клапана недогрев за счет превышения температурного графика регулирования будет компенсирован, и в целом за сутки система отопления получит необходимое количество теплоты. Практика показывает, что за счет тепловой инерции дома и повышения интенсивности бытовых тепловыделений при увеличенном водоразборе колебания температуры внутреннего воздуха не превысят 0,5 О С, что не заметно для жителей.

Сторонники системы теплоснабжения от ЦТП преувеличивают величину экономии от ликвидации осенне-весенних «перетопов». Теоретически, используя график стояния наружных температур от 2 до 8 О С, экономия тепловой энергии за отопительный период, например в Москве, составит около 4% годового теплопотребления на отопление. А система автоматического регулирования на ИТП или в АУУ дополнительно к погодному регулированию позволяет при пофасадном разделении системы отопления учесть тепло, поступающее от солнечной радиации, что дает еще 5-10% экономии тепловой энергии на каждом здании. Опыт осуществления такой системы в 1980-х годах на ряде зданий в Москве показал, что при наружной температуре минус 5 - 7 О С система отопления освещенного солнцем фасада выключается полностью не только на период освещения этого фасада солнцем, но, как минимум, на такое же время и после - за счет отдачи теплоты, аккумулированной мебелью и внутренними ограждениями .

Поэтому при реконструкции зданий можно ограничиться только пофасадным авторегулированием системы отопления, не устанавливая термостаты на отопительных приборах. В секционных системах с нижним и верхним розливом теплоносителя пофасадное разделение реализуется путем устройства перемычек в подвале и на чердаке, главный стояк одной секции питает одну пофасадную систему, а стояк другой секции используется для системы противоположного фасада.

Организовать пофасадное авторегулирование в бесчердачных зданиях еще легче, т.к. вертикально-однотрубные системы отопления выполняются с нижней разводкой подающей и обратной магистралей и П-образными стояками. Все переключения, необходимые для объединения пофасадных веток секционных систем, делаются только в подвале (рис. 3). Также при пофасадном авторегулировании необязательна установка термостатов на отопительных приборах, и поэтому исключаются сварочные и другие монтажные работы в квартирах. Необходимо только в нескольких комнатах установить датчики температуры внутреннего воздуха для управления регулятором отопления.

В домах с теплым чердаком, выполняющим функцию сборной камеры вытяжного воздуха, который удаляется потом на улицу через единую на секцию шахту (именно такие дома стали сооружаться в России по типовым проектам после бесчердачных зданий), облегчается установка датчиков температуры внутреннего воздуха. Аналогом этой температуры может быть температура воздуха в сборных каналах вытяжной вентиляции из кухонь квартир, ориентированных на данный фасад. Учитывая дополнительные тепловыделения в кухнях при приготовлении пищи, экспериментально установлено, что задаваемая для поддержания в регуляторе температура увеличивается примерно на 1 О С против требуемой температуры воздуха в рабочей зоне. В этом случае для зданий выше 12 этажей достаточно двух датчиков температуры на каждом фасаде, и при наличии теплого чердака эти датчики устанавливаются без особых затруднений, не беспокоя жильцов (при установке датчиков температуры внутреннего воздуха в квартирах, для получения достоверных данных на каждом фасаде их следует устанавливать не менее четырех).

Принципиальная схема подключения автоматизированной пофасадной системы отопления к тепловым сетям от ЦТП показана на рис. 4. Здесь показано подключение пофасадной системы отопления через смесительные циркуляционные насосы. Возможно подключение через элеваторы с регулируемым соплом (показано на рис. 3), а возможно через водонагреватели отопления по независимой схеме присоединения, но при этом следует иметь в виду, что необходимо устанавливать на каждую пофасадную ветку самостоятельный водонагреватель.

Теплоснабжение от ИТП

Переход существующих зданий на теплоснабжение от ИТП вместо ЦТП, несмотря на большую стоимость оборудования ИТП нескольких зданий по сравнению с оборудованием одного ЦТП, снижает общую стоимость системы теплоснабжения, поскольку не нужно оплачивать перекладку внутриквартальных сетей ГВС - они не нужны при переносе водонагревателей в ИТП. Более того, это сокращает эксплуатационные расходы, связанные с потерей тепловой энергии от этих трубопроводов и с затратами электрической энергии на перекачку горячей воды по ним, а также в связи с резким сокращением циркуляционного расхода в системах горячего водоснабжения, вызванного трудностями в распределении циркуляции от ЦТП . Приближение центра приготовления горячей воды к потребителю не только устраняет перечисленные выше недостатки, но и повышает качество снабжения горячей водой.

(п.п. 14.3 и 14.4) подтверждает обязательность сооружения автоматизированного индивидуального теплового пункта при новом строительстве, при реконструкции или вместо капитального ремонта ЦТП, внутриквартальных сетей от него, а также при капитальном ремонте отдельных зданий, подключенных к эксплуатируемому ЦТП.

Ошибочно также мнение, что нецелесообразно вкладывать средства в автоматизацию системы отопления существующих зданий, пока не выполнено их утепление и не заменены окна на более герметичные. Наоборот, в этом случае осуществление автоматического регулирования подачи теплоты на отопление таких домов еще более эффективно, потому что:

во-первых , если дом продувается, никакой жилец не будет мириться с низкими температурами воздуха в жилых помещениях и примет меры к увеличению отопительных приборов в расчете на экстремальные погодные условия. Но при снижении силы ветра или с повышением наружной температуры снижаются ветровой и тепловой напоры, воздействующие на проницание наружного воздуха через ограждения, и объем инфильтрации сокращается, в результате здание в эти периоды начинает перегреваться. Устранить этот перегрев можно только автоматизацией системы отопления.

во-вторых , основная экономия теплоты на отопление достигается за счет несоответствия требуемого для жилых домов графика подачи теплоты с учетом увеличивающейся доли бытовых тепловыделений в тепловом балансе дома центральному графику регулирования, рассчитанному на потребителей, у которых бытовые тепловыделения отсутствуют или не учитываются. За счет возможности снижения температурного графика подачи теплоты на отопление из- за растущей доли бытовых тепловыделений при повышении наружной температуры достигается экономия тепловой энергии на отопление. А поскольку бытовые тепловыделения в домах с одинаковой степенью заселенности одинаковы и не зависят ни от наружной температуры, ни от утепленности дома, то экономия теплоты от автоматизации системы отопления по абсолютной величине будет также одинакова, только в утепленном доме ее относительная составляющая к общему теплопотреблению будет выше.

Добавление в ведомость учета отпуска тепловой энергии параметров контроля за режимом теплопотребления

Методика расчета температур теплоносителя в подающем и обратном трубопроводах системы отопления, которые надо задавать контроллеру для поддержания в зависимости от изменения температуры наружного воздуха и с учетом выявленного запаса системы отопления и увеличения доли бытовых тепловыделений в тепловом балансе квартир с повышением наружной температуры, приводится в .

Эти два параметра целесообразно ввести в ведомость учета отпуска тепловой энергии для возможности контролирования правильности работы автоматики регулирования отопления. Соответственно температуры теплоносителя в подающем и обратном трубопроводах системы отопления вместе с температурой наружного воздуха, которая также заводится в контроллер регулятора отопления, должны регистрироваться прибором учета тепловой энергии и выводиться на печать, что не представляет никаких сложностей.

Ведомость учета отпуска тепловой энергии в АУУ составляется раздельно на отопление и ГВС, поскольку от ЦТП теплоноситель на эти системы поступает по отдельным трубопроводам и на вводе в здание устанавливаются отдельные приборы учета теплоты на отопление и на горячее водоснабжение.

Отметим, что вместо колонок 5 и 6 (табл. 1) приводится отклонение показаний по отношению к максимальному значению (табл. 2, колонка 8), что позволяет сразу сравнивать реальное отклонение с допускаемой погрешностью измерения приборами. Правда, дублирование измерения расхода теплоносителя на обратном трубопроводе в АУУ и ИТП выполняется в исключительных случаях. Это актуально для ЦТП, когда от него трубопроводы к домам прокладываются в подземных каналах, а возможно и бесканально. В АУУ и ИТП после узла учета трубопроводы прокладываются в помещениях открыто с возможностью визуального осмотра, и для учета теплопотребления достаточно измерение расхода теплоносителя только по одному подающему трубопроводу. Тогда колонки 7 и 8 (табл. 2) и 4 и 5 (табл. 4) будут свободны.

Колонка «Трубопровод подпитки» (табл. 1) исключается, поскольку после ЦТП в домах, как правило, не применяется независимого присоединения. В графу «Температура теплоносителя» добавляются расчетные значения в подающем t 1р, и обратном трубопроводе t 2р, (табл. 2, колонки 10 и 14), принимаемые из расчетного температурного графика в зависимости от средней за данные сутки температуры наружного воздуха.

Если ранее система отопления подключалась к внутриквартальным сетям через элеватор, то в графу «Температура теплоносителя» добавляются значения температуры в подающем трубопроводе после узла смешения t 1 ои, т.е. температура теплоносителя, поступающего в систему отопления, и расчетные значения после узла смешения t 1 ор (табл. 2, колонки 11 и 12).

Кстати, при установке узлов учета на вводе тепловых сетей в дом из расчета потребленной тепловой энергии в ведомости учета необходимо исключить тепловые потери трубопроводами Qтп от стены дома (границы эксплуатационной ответственности) до узла учета, составляющие ничтожную долю процента от измеряемого теплосчетчиком расхода, собственные измерения которого осуществляются с погрешностью ±4%, и соответственно покрываются этой погрешностью. Это, как раз, один из способов перекладывания издержек теплоснабжающей организации на потребителя.

В табл. 3 приводится ведомость учета отпуска тепловой энергии в АУУ с пофасадным авторегулированием, где исключены колонки 7 - массы теплоносителя по 2-му трубопроводу и 8 - отклонение в измерении масс по обоим трубопроводам, и добавлены колонки с измеренной температурой теплоносителя, подаваемого в систему отопления другого фасада, и температуры воздуха в помещениях обоих фасадов, измерения которых поступают в контроллер.

Ведомость учета отпуска тепловой энергии в автоматизированном ИТП (табл. 4) по сравнению с типовой ведомостью (табл. 1) меняется в связи с тем, что теплосчетчик на ИТП измеряет суммарный расход тепловой энергии на отопление и ГВС. Поэтому для сопоставления фактически потребленной на отопление тепловой энергии с расчетной за данные сутки в зависимости от t M , необходимо из общего измеренного расхода вычленить расход на отопление. Эти измерения и расчеты следует привести на отдельной ведомости (табл. 5), прилагаемой к ведомости на табл.4.

Для реализации разделения расходов тепловой энергии в теплосчетчик заводятся дополнительные сигналы от водосчетчика, измеряющего расход холодной воды на ГВС G гвс) перед водонагревателем ГВС, и температуры холодной t хв на входе и горячей воды t гвс на выходе из водонагревателя ГВС (средние за сутки). Это составит три дополнительные колонки в приложении к ведомости учета (табл. 5). Четвертая дополнительная колонка «Тепловая энергия на горячее водоснабжение, Q гвс, Гкал», рассчитывается по формуле:

Q гвс =G гвс *(t гвс - t хв) * (1+к тп),

где G гвс - измеренный за сутки расход холодной воды, идущей на ГВС, т; к тп - коэффициент, учитывающий потери теплоты трубопроводами системы горячего водоснабжения. Принимается в зависимости от изоляции стояков ГВС: с изолированными стояками 0,2, с неизолированными - 0,3.

Тогда, измеренный расход тепловой энергии на отопление Q ои находится по разнице суммарного измеренного теплосчетчиком расхода тепловой энергии Q и, за сутки и рассчитанного расхода - на ГВС Q гвс, и заносится в качестве 3-ей колонки табл. 5 «Измеренно-вычисленный расход тепловой энергии на отопление, Q ои Гкал». Предыдущие 1, 2 и последующие 4 и 5 колонки такие же, как и в ведомости учета (табл. 2, колонки 1, 2 и 4, 5).

Дополнительно вводятся для осуществления анализа работы регулятора отопления и режима работы системы отопления колонки, в которых приводятся результаты среднесуточного измерения температур воды в подающем и обратном трубопроводах системы отопления t 1о и t 2 о „ а также по аналогии с ведомостью учета по табл. 2

- «Расчетная в подающем трубопроводе, t 1ор » и «Расчетная в обратном трубопроводе, t 2ор », принимаемые из расчетного температурного графика в зависимости от средней за данные сутки температуры наружного воздуха.

Основная ведомость (табл. 4) повторяет табл. 1, за исключением изменений, связанных с введением контроля за соответствием температуры теплоносителя, поступающего из тепловой сети, графику центрального регулирования в зависимости от среднесуточной температуры наружного воздуха - значения этих температур из графика в графе «Температура теплоносителя», в колонке рядом с «Подающий трубопровод, t 1 » - «Расчетная в подающем трубопроводе, t 1р,». Вместо колонок +ΔМ, - ΔМ приводится одна колонка - Отклонение показаний по отношению к максимальному значению, (М 1 - М 2)x100/(24xG мах), %; колонка «Трубопровод подпитки» сохраняется.

Надеюсь, создание специализированной организации - независимого оператора коммерческого учета, осуществляющего расчеты за потребленную тепловую энергию между ее поставщиком и пользователем, и наделение этого оператора функциями анализа энергоэффективности использования передаваемого ресурса, позволит реально повысить энергоэффективность в сфере ЖКХ. Для этого следует:

■ совместить действия по установке приборов учета в зданиях с реализацией автоматического регулирования подачи теплоты на отопление;

■ включать в ведомости учета тепловой энергии показатели, с помощью которых можно на уровне оператора проверить соответствие режима подачи теплоты на отопление оптимальным решениям;

■ обязать участников передачи и использования энергоносителя выполнять предписания оператора коммерческого учета.

Литература

2. Ливчак В.И. Фактическое теплопотребление зданий как показатель качества и надежности проектирования // АВОК. 2009. № 2.

3. Ливчак В.И. Автоматическое ограничение максимального расхода сетевой воды на тепловой пункт//Водоснабжение и сантехника. № 7. 1987 г.

4. Ливчак В.И., Чугункин А.А., Оленев В.А. Энергоэффективность пофасадного автоматического регулирования систем отопления. // Водоснабжение и сантехника. № 5, 1986 г.

5. Ливчак В.И. Последовательность в исполнении требований повышения энергоэффективности многоквартирных домов. // Энергосбережение. 2010. № 6.

6. Ливчак В.И. Обеспечение энергоэффективности многоквартирных домов. Повышение теплозащиты зданий и автоматизация отопления. //АВОК. 2012. № 8.

Принимая участие в различных совещаниях и конференциях с участием руководителей ОСМД и просто при встречах с ними, очень часто приходится слышать вопрос: с чего начинать работу по повышению энергоэффективности нашего дома?

Казалось бы, ответ на этот вопрос сегодня в избытке можно найти и в средствах массовой информации, и в интернете. Вместе с тем то, что подобный вопрос задается, свидетельствует о том, что многие руководители ОСМД не могут сложить для себя четкой и последовательной программы действий в направлении снижения энергопотребления управляемого ими жилого дома. Да это и понятно, так как каждое здание по своему уникально – и по конструктивным особенностям, и по примененному инженерному оборудованию, и по срокам эксплуатации. Учитывая это, создать универсальную программу термомодернизации зданий, которая бы подходила для всех существующих зданий, просто не реально. Такая программа для каждого конкретного здания должна разрабатываться индивидуально, а вот подходы к разработке могут быть общими. Давайте попробуем разобраться в этом.

Реалии нашего времени таковы, что уже никто не сомневается в необходимости экономии энергоресурсов. Более того, постоянный рост тарифов на энергоресурсы и коммунальные услуги заставляет каждого жителя страны реально заниматься их экономией. По сути, проводимая государством тарифная политика стала мощным стимулом повышения энергоэффективности существующего жилого фонда. Одновременно с этим она же породила активизацию самодеятельного “творчества” населения по термомодернизации своих квартир. Массово проводится наружное утепление отдельных квартир, многие отказываются от централизованного отопления и переходят на автономное, кто-то увеличивает количество секций в отопительных приборах в своей квартире, некоторые отказываются от горячего водоснабжения и переходят на автономные бойлеры… перечень подобных мероприятий можно продолжать и продолжать. Однако создать оазис для своей квартиры в энегоНЕэффективном доме – занятие бесперспективное. Кроме ухудшения технического состояния здания, разбалансировки работы его инженерных систем оно ничего не принесет! Только совместными усилиями все жильцов дома можно решить проблему повышения энергоэффективности здания, обеспечить комфортные условия проживания для всех владельцев квартир и при этом значительно сократить расходы на оплату за энергопотребление. Сегодня, пожалуй, самая главная задача руководства ОСМД – объединить усилия всех совладельцев каждого дома вокруг идеи повышения энергоэффективности их совместной собственности, создания коллектива единомышленников, готовых взять на себя ответственность и затраты по ее реализации.

Энергоауидит

Саму же работу по повышению энергоэффективности здания начинать следует с тщательной и всесторонней проверки технического состояния здания и его инженерных систем. Выполнить ее нужно с привлечением квалифицированных энергоаудиторских компаний. На этом этапе главной задачей является выявление всех факторов, негативно влияющих на устойчивость здания и бесперебойную работу его инженерных систем, а также определение конкретных причин сверхнормативного энергопотребления. Подобный анализ должен лечь в основу будущей программы повышения энергоэффективности здания, включающей перечень ремонтных работ, связанных с повышением устойчивости здания и термомодернизационных мероприятий с ориентировочными сроками их выполнения и затратами на реализацию.

Программа должна быть рассмотрена и утверждена на общем собрании ОСМД, после чего она становится практическим руководством к действию по повышению энергоэффективности здания. При этом если здание имеет проблемы, связанные с его устойчивостью (к примеру – неравномерная осадка фундаментов, протечки кровли, обрушение фасадной облицовки и т.п.), то работы по устранению подобных нарушений должны быть приоритетными. Если же таких проблем нет, либо они устранены – можно приступать к реализации термомодернизационных мероприятий.

Современная практика располагает значительным количеством энергоэффективных технологий, применение которых позволяет существенно сократить энергопотребление любого здания. Попробуем отранжировать их по затратности и эффективности.

Учет потребления

Как правило, начинать термомодернизационную деятельность следует с улучшения работы инженерных систем здания. И в первую очередь необходимо организовать учет потребления всех энергоресурсов . В основном это касается потребляемой тепловой энергии, так как учет потребления холодной и горячей воды, электроэнергии и даже газа практически решен каждым квартировладельцем. С тепловой энергией дело обстоит гораздо сложнее. Технически можно организовать поквартирный учет тепловой энергии, но это очень дорогостоящее мероприятие и не по карману большинству населения. Гораздо проще организовать подомовой учет потребления тепла. Тем более что установка подомовых счетчиков тепловой энергии сегодня входит в обязанность теплоснабжающих организаций. Как показывает практика, переход от оплаты за отопления квадратных метров к оплате за потребленные калории тепловой энергии позволяет жителям на 20-30% снизить оплату за отопление своих квартир, при этом, не вкладывая в это дополнительных средств . Понятно, что установка подомового счетчика тепловой энергии абсолютно не влияет на улучшение энергоэффективности здания, а только позволяет навести порядок в размерах оплаты за реально потребленную тепловую энергию.

Замена устаревших тепловых пунктов

Первым по эффективности мероприятием, позволяющим действительно повысить энергоэффективность здания, является замена устаревших тепловых пунктов элеваторного типа, которыми оборудованы большинство существующих жилых домов, на современные индивидуальные тепловые пункты (ИТП) с погодным регулированием . Это компактное и не очень сложное оборудование, состоящее из нескольких насосов, различных клапанов, задвижек с электроприводами, датчиков и измерительных приборов, пластинчатого теплообменника, теплосчетчика и системы автоматизации с программатором. Основным достоинством этого оборудования является то, что циркуляция теплоносителя во внутридомовых сетях осуществляется принудительным образом, при этом автоматически регулируется давление в системе, что позволяет избежать аварийных ситуаций в сетях из-за перепадов давления и оперативно откликаться на изменения гидравлического сопротивления сети, связанное с поквартирным регулированием.

Благодаря ИТП существенно улучшается работа системы горячего водоснабжения. Основным устройством, обеспечивающим эту функцию, является пластинчатый теплообменник, где первичный теплоноситель используется для подогрева обычной водопроводной воды до требуемых параметров. Циркуляция горячей воды в системе осуществляется специальным циркуляционным насосом. Средства автоматизации поддерживают систему горячего водоснабжения в рабочем состоянии в зависимости от разбора горячей воды и времени суток. Очень важным является также наличие у современных ИТП такой функции, как регулирование теплопотребления здания в зависимости от погодных условий. Благодаря соответствующей управляющей автоматизированной системе, которая на основании показаний датчика температуры наружного воздуха уменьшает либо увеличивает подачу теплоносителя во внутридомовую отопительную сеть, удается оптимизировать энергопотребление здания и значительно экономить энергоресурсы. Кроме отмеченного в состав ИТП входит узел учета потребленной тепловой энергии, а наличие средств автоматики и соответствующего программатора позволяет жильцам не только контролировать расход тепловой энергии, но и управлять им. Появляется возможность регулировать температуру теплоносителя во внутридомовых отопительных сетях и горячей воды в системе горячего водоснабжения, увеличивать или уменьшать расход тепловой энергии по часам суток, задавать необходимые параметры по давлению в системе, исключающие возможность аварийных ситуаций. Как показывает практика, замена устаревших ИТП на более современные позволяет экономить 30% и более тепловой энергии, а вложенные в такую замену средства окупаются за один-два отопительных периода .

Балансировочные клапаны

Очень часто в существующих жилых домах наблюдается такое явление, как перетоп в одних квартирах и недотоп в других. Сегодняшние технические средства позволяют избавиться от этого, но только в том случае, если здание оборудовано современным ИТП. Для этого применяются специальные балансировочные клапаны, устанавливаемые на стояках отопительных сетей. Они обеспечивают автоматическую балансировку отопительной системы и подачу теплоносителя с одинаковыми параметрами ко всем отопительным приборам дома. Само по себе реализация этого мероприятия не обеспечивает ощутимой экономии энергоресурсов. Однако благодаря ему создаются одинаковые комфортные условия проживания для всех жильцов дома.

Радиаторные терморегуляторы

Следующим энергоэффективным мероприятием могло бы быть оборудование отопительных приборов во всех квартирах дома радиаторными терморегуляторами. Благодаря своим конструкционным особенностям этот прибор реагирует на малейшие изменения температуры в помещении и увеличивает либо уменьшает подачу теплоносителя на отопительный прибор. С помощью радиаторного терморегулятора можно задавать желаемую температуру в помещении в диапазоне от 5 до 26 градусов. Другими словами, у потребителя появляется возможность регулировать тепловой комфорт в своей квартире, устанавливать желаемую температуру в каждом помещении, понижать ее в ночное время или до минимально допустимой во время отсутствия жильцов в квартире. Опять же установка радиаторных терморегуляторов возможна только если здание оборудовано современным ИТП. Вместе с тем для того, чтобы это мероприятие кроме комфорта проживания приносило еще и экономический эффект, необходимо выполнить ряд условий. Первое – как уже отмечалось, это наличие современного ИТП с общедомовым учетом тепловой энергии. Второе – радиаторные терморегуляторы должны быть установлены на всех отопительных приборах в здании. И третье – все жильцы дома активно используют терморегуляторы для экономии тепла. Последнее условие, пожалуй, самое сложное. Потребуется немало разъяснительной работы со стороны руководства ОСМД, чтобы все совладельцы поняли важность и выгодность экономии тепла с помощью радиаторных терморегуляторов. И когда это все удастся сделать, реальная экономия тепловой энергии составит около 20% при сравнительно небольших затратах на установку радиаторных терморегуляторов.

После реализации вышеприведенных термомодернизационных мероприятий можно быть уверенными, что системы отопления и горячего водоснабжения в нашем доме отвечают современным требованиям по энергоэффективности и можно приступать к выполнению следующих шагов, связанных с утеплением ограждающих строительных конструкций. Следует подчеркнуть, что соблюдения именно такого порядка – сначала модернизируем инженерные сети, а затем утепляем здание – имеет большое значение. Если просто утеплить здание, то это дорогостоящее мероприятие не приведет к желаемому снижению затрат на его отопление, так как количество тепловой энергии, подаваемой для отопления здания, будет таким же, как и до утепления. В квартирах, безусловно, станет теплее, а отсутствие современных средств автоматизации и регулирования теплопотребления приведут лишь необходимости избавления от избыточного тепла путем так называемого “форточного” проветривания. И наоборот, утепление зданий, где предварительно проведена модернизация системы отопления, приносит значительный экономический эффект и позволяет на половину и более сократить энергопотребление.

Утепление

Утепление ограждающих конструкций здания предусматривает необходимость выполнения целого комплекса мероприятий, связанных с заменой устаревших окон и входных дверей на энергоэффективные, утепления наружных стен, крыш, перекрытий над подвалами и внутридомовыми проездами. При этом замена окон, как правило, выполняется каждым владельцем квартиры самостоятельно. Здесь важно чтобы новые окна отвечали нормативным требованиям по сопротивлению теплопередачи для климатической зоны, в которой находится ваше здание. Процесс утепления остальных ограждающих конструкций понятен. Важно лишь соблюдать требования к качеству применяемых изоляционных материалов и выбору квалифицированной подрядной организации, которая будет заниматься утеплением.

Выполнив все приведенные выше термомодернизационные мероприятия, можно быть уверенным, что наше здание является энергоэффективным с точки зрения сегодняшних требований. Нерешенной остается лишь одна проблема – обеспечение справедливой оплаты за тепловую энергию каждым конкретным потребителем в зависимости от ее фактического потребления. Обеспечить это возможно только за счет организации поквартирного учета потребленной тепловой энергии.

Установить в квартире приборы учета технически не сложно. Так если квартира имеет единый тепловой ввод, что в существующем жилье встречается довольно редко, то прибор учета ставится на этом вводе. Если такого ввода нет, то можно установить счетчик на каждый отопительный прибор. Такой вариант довольно затратный для потребителя, так как каждый теплосчетчик имеет значительную стоимость. Не случайно в большинстве стран, где давно занимаются теплосбережением, применяется другая система учета с использованием недорогих приборов, так называемых распределителей затрат на отопление, устанавливаемых на каждом отопительном приборе (радиаторе). Приборы-распределители по своей сути не являются счетчиками тепловой энергии. Однако с их помощью, зная общее потребление тепловой энергии дома, определяемой по общедомовому счетчику, можно вычислить долю потребления тепловой энергии каждым отопительным прибором квартиры и дома в целом. Считывание показаний приборов-распределителей осуществляется дистанционно, либо ежемесячно непосредственно владельцами квартир. Разработаны специальные программные комплексы, позволяющие на основании общедомового теплопотребления и показаний приборов-распределителей определить объем потребления тепла каждой квартирой и, соответственно, размер платы за ее использование. Казалось бы, все очень сложно, но как показывает практика наших соседей-поляков, где подобные системы широко распространены, работают они довольно просто и эффективно.

В данной статье основное внимание мы уделили вопросам сокращения энергопотребления в системах отопления и горячего водоснабжения. И это не случайно, так как сегодня тарифы в этой сфере самые значительные и остается тенденция к их будущему повышению. С остальными ресурсами дело обстоит несколько проще. Практически каждый квартировладелец имеет средства их учета (либо может установить) и средства регулирования потребления в виде кранов и выключателей. Хотя и здесь есть большие возможности для повышения энергоэффективности. Но это уже тема другой статьи.

Рядовая панельная четырехэтажка (48 квартир), что на массиве Куйлюк-2 в Ташкенте, стала полигоном для отработки и реализации передовых технических идей и решений по энергосбережению. Неожиданно выпавшей на ее долю удаче она обязана проекту "Инициатива по энергосбережению в строительном секторе в странах Восточной Европы и Центральной Азии" (ESIB), который осуществляется в Узбекистане. Он финансируется Европейским Союзом, направлен на пропаганду энергоэффективности и является частью программы INOGATE, которая реализуется в 11 странах.

По словам международного консультанта, ключевого эксперта проекта ESIB Марка Белланжера , в центре внимания программы INOGATE - проблемы энергопотерь, в том числе и в строительном секторе. Она ставит перед собой 2 главные задачи: обеспечение бесперебойной поставки энергоносителей и диверсификацию энергоресурсов с целью сокращения потерь энергии, привлечения для этого новых инвестиций. Долгосрочная цель программы - оказание содействия в создании полноценного регионального энергетического рынка. Учитывая процессы глобализации, вопросы, связанные с энергетикой, рассматриваются сегодня не в разрезе отдельно взятой страны и даже региона, а в глобальном масштабе. Страны обмениваются друг с другом не только товарами, но и энергией. Однако огромный объем ее теряется по ряду причин: например, из-за плохой теплоизоляции, при транспортировке и так далее. Если сберечь эти потери, они могут быть направлены на экспорт, а полученный от этого доход страна может реинвестировать в улучшение энергоэффективности, что в свою очередь способно дать толчок созданию новой отрасли.

ESIB является инициативой по сбережению энергии в зданиях и охватывает также многоквартирный жилой фонд. Исполнитель проекта - Узбекское агентство "Узкоммунхизмат". ESIB состоит из 4 компонентов. Это анализ действующего законодательства по энергосбережению и рекомендации по его совершенствованию; содействие созданию благоприятных условий для финансирования мероприятий по энергоэффективности, в том числе пилотных проектов; улучшение технических норм и правил, стимулирующих применение энергоэффективных технических решений с учетом местных условий; повышение информированности населения об энергосбережении.

Для рядовых потребителей не всегда понятно, что такое энергоэффективность. В двух словах - это эффективное использование энергетических ресурсов. Энергоэффективным считается тот дом, который потребляет меньше энергии, а обеспечивает при этом более комфортные условия для жителей, нежели аналогичное здание, где потребление больше, а отдачи меньше. Добиться максимального эффекта можно с помощью современных энергоэффективных технологий, а также изменения отношения рядовых потребителей к этой проблеме.

С этой целью в рамках проекта был проведен семинар-тренинг "Энергоаудит в зданиях", объектом которого стала куйлюкская четырехэтажка. По словам его организаторов, проблемы этого дома, связанные с энергоснабжением, характерны для большей части аналогичных домов, составляющих основную часть многоквартирного жилищного фонда столицы и других регионов Узбекистана. Предварительно местные специалисты провели мониторинг энергоэффективности этого дома, предложили технические решения по ее повышению, которые были озвучены во время семинара. Но его цель была гораздо шире: выработать у участников семинара - представителей жилищно-коммунальной сферы нашей страны, а также Казахстана и Азербайджана - общее понимание подходов и методов, использованных в анализе энергоэффективности. Это делалось для того, чтобы они могли применять полученный опыт в профессиональной деятельности. Поэтому участникам предоставили возможность выехать на место, исследовать ситуацию, связанную с энергопотреблением, оценить энергоэффективность дома, варианты ее повышения и, разделившись на группы, предложить свои сценарии энергетической реконструкции многоэтажки. Выражаясь медицинской терминологией - участники семинара провели обследование "больного", поставили диагноз, назначили лечение.

По оценке специалистов, сегодня дом потребляет тепловую энергию в 2,4 раза больше, чем в момент его строительства в 1970 году. Участники семинара определяли, где кроются основные причины увеличения тепловых потерь. Это сейсмический шов, балконы, лестничные клетки и т.д. Выяснилось, что при теплоизоляции сейсмического шва потери тепла можно свести к нулю. Большие потери (от 36 до 40%) происходят через перестроенные жителями балконы. Утечка тепла идет также через балконные стены и окна. В результате мероприятий по повышению энергоэффективности эти потери можно сократить на 80%. От 16 до 20% всех теплопотерь происходит через лестничные клетки. Стены здесь очень тонкие (12 см), теплоизоляция отсутствует. Ресурсосберегающие мероприятия могут снизить утечку тепла на 80%.

Во время презентации энергоаудита дома прозвучали разные технические решения по повышению энергоэффективности. В частности, одно из них касалось крыши: предлагалось применять прессованную солому (камыш), которая размещается на чердаке. Поскольку бетонная крыша дома находится в очень плохом состоянии, одно из предложений было о ее покрытии гофрированной листовой сталью, предотвращающей попадание воды на теплоизоляционный материал.

Ситуацию с наружной системой центрального отопления участники семинара назвали критической. Трубы теплосети, проходящие по поверхности, недостаточно утеплены, в результате чего теряется 46% тепловой энергии, вырабатываемой котельной, которая находится на расстоянии 3,5 км от дома. Предлагались различные решения по минимизации этих потерь, обсуждались их плюсы и минусы. Среди вариантов - ремонт и теплоизоляция системы центрального отопления; установка газовой котельной по обслуживанию квартала; установка газового котла для каждого дома.

Среди других предложений, способных повысить энергоэффективность дома, - теплоизоляция наружных стен 10-сантиметровым слоем полистирола, установка пластмассовой сетки, нанесение 2 слоев штукатурки, грунтовка, покраска, которые позволят обеспечить порядка 60% экономии тепла. Новые окна, рамы из ПВХ, двойные стеклопакеты - около 38% экономии. Теплоизоляция кирпичных и бетонных стен балконов - 90% экономии, а установка новых окон на балконах - 58% экономии и так далее.

Мероприятия по энергоэффективности будут способствовать улучшению технического состояния дома, повысят его рыночную стоимость. В связи с этим обсуждался вопрос возможности долевого участия жителей в энергетической реконструкции дома. Ведь вложенные ими средства смогут вернуться сокращением расходов на отопление. Предложенные мероприятия по повышению энергоэффективности дома могут служить хорошим пособием для многоэтажек, находящихся в аналогичном положении.

Второй этап реализации проекта предполагает проведение реконструкции дома с использованием предложенных решений. Что касается финансирования, то, по словам специалистов проекта, ESIB не содержит бюджета на инвестиции, но может работать с международными финансовыми организациями, другими структурами по привлечению средств в реализацию мероприятий по энергосбережению.

Ирина ГРЕБЕНЮК

Технология обустройства стен и выбор системы утепления, пожалуй, самые дискуссионные вопросы в малоэтажном строительстве. СуперДом обратился за авторитетной рекомендацией по поводу повышения энергоэффективности стен к руководителю технического отдела «Тепловер» ООО НПП Укрвермикулит Владимиру Дуброву.

Владимир Дубров
руководитель технического отдела
Специалист «Тепловер» ООО НПП Укрвермикулит

Требования к теплоизоляции стен

В Украине теплотехнические характеристики ограждающих конструкций определяются строительными нормами ДБН В-2.7-31:2016. Норматив устанавливает минимальные требования к значению сопротивления теплопередаче стен, перекрытий, дверей, окон и т.д. В последнее время эти нормы все чаще пересматривают, и очевидно, что в будущем они приблизятся к европейскому уровню. Например, в Европе, где давно провозглашен курс на повышение энергоэффективности зданий, минимальное сопротивление теплопередаче (коэффициент R, м2К/Вт) стен составляет: в Латвии - 4, в Литве - 5, в Швейцарии - 5, в Норвегии - 5,5.

Выбирая толщину и устройство стен, нужно стараться снизить расходы на энергоресурсы в течение всего периода эксплуатации дома. Именно этот фактор для европейских потребителей зачастую становится решающим при выборе жилья или объекта инвестирования. Достичь минимального уровня энергопотребления можно, используя инновационные материалы и контроль качества работ на всех этапах строительства.

Теплый дом лучше строить из энергоэффективных блоков достаточной толщины так, чтобы основную роль в сохранении тепла играла несущая стена, а система утепления была дополнением. Не стоит возводить стены из тяжелых материалов, а потом утеплять их бесконечным слоем теплоизоляции. Для энергоэффективного строительства на рынке есть стеновые керамические и газобетонные блоки, которые соответствуют действующим строительным нормам.

Почему так важно утеплять стены дома

Людям, которые хотят инвестировать в будущее, стоит позаботиться о том, чтобы их дом получил более высокий класс энергоэффективности. Поэтому фасад все равно лучше дополнить системой утепления, которая увеличит теплосопротивление стен, уменьшит затраты на обогрев и защитит сами стены. Можно использовать:

  • системы утепления мокрого типа на основе пенополистирола и базальтовой ваты;
  • системы навесных вентилируемых фасадов;
  • системы утепления теплоизоляционными смесями.

Для энергоэффективных блоков больше подойдут материалы с высокой паропроницаемостью. При их использовании стена сможет «дышать» и оставаться сухой в течение всего периода эксплуатации. В качестве утеплителя стоит выбирать безопасные, негорючие и экологичные материалы, такие как базальтовая вата и теплоизоляционные смеси. Другой важнейший фактор выбора системы утепления - срок эффективной эксплуатации и долговечность системы. К слову, на систему «Тепловер» производитель дает 25 лет гарантии.

Не менее важен и контроль правильности монтажа системы утепления, ведь даже самый лучший материал при безграмотном подходе не будет эффективен. Надежный результат может обеспечить сертифицированная бригада от завода-производителя и взвешенный подход при выборе других исполнителей.

Рекомендуем почитать

Наверх